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Metagenomics: Overview

DNA extraction Sequencing

Reads
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Experimental part



Metagenomics: Overview (today’s focus)

DNA extraction Sequencing

Reads
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Experimental part

1) Data preprocessing

3) Assembly

2) Read-based4) Binning

Day 2

Computational part



Metagenomics workflow

DNA extraction Sequencing

Raw reads
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• Exploration
e.g., FASTQC

• Processing



Data preprocessing - Adapters

Adapters are nucleotide sequences placed at 
either one or both ends of the DNA fragments that 
are being sequenced
They are composed of 3 sections:
▪ Sequencer binding site (illumina)
▪ Multiplexing index (P5-P7)
▪ Sequencing primer binding site (illumina)
They are necessary for sequencing but should be 
removed early on in data pre-processing steps

Single

Double

Index sample A
Index sample B
DNA sequence
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Data preprocessing - Demultiplexing

Demultiplexing tools: Sabre, iDemux etc..

Generally performed by sequencing companies before sending
the data. Good to know what it is to be able to spot it in QC.

Index sample A
Index sample B
DNA sequence
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Data preprocessing - Adapter trimming

From QC data you may notice
that adapters are still present in
your sequence. You should
remove them either by providing
the adapter sequence or using a
de-novo search.

Recommended tools:
Trimmomatic, Cutadapt, bbduk, fastp

After adapter removal, rerun QC
on the fastq files

Keep an eye out for polyA and
polyG sequences
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Data preprocessing - Quality filter

Phred quality score – Logarithmic score representing the quality of a nucleotide

Phred Quality
Score

Probability of
incorrect base call

Base call
accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%
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Data preprocessing - Host (& other) removal

Rhizosphere 
Microbiome

Plant reads

e.g. Bowtie2, bbduk, 
KneadData, HoCoRT
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Metagenomics: Read-based

DNA extraction Sequencing

Reads

100-150 bp

Read-based 

The read based:
Mapping into 

databases
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Read-based approaches

Read-based ≃ Reference-based

Antibiotic resistance genes
Virulence factors

Functional profiling

Taxonomic
profiling

Align 
short-reads to 
different 
databases 
containing 
reference 
sequences



Antibiotic resistance genes
Virulence factors

Functional profiling

Taxonomic
profiling
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Read-based approaches

Read-based ≃ Reference-based

E.g. Metaphlan, Kraken Align 
short-reads to 
different 
databases 
containing 
reference 
sequences
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Read-based approaches

Read-based ≃ Reference-based

Antibiotic resistance genes
Virulence factors

Functional profiling

Taxonomic
profiling

E.g. HUMAnN,
MetaPathways

Align 
short-reads to 
different 
databases 
containing 
reference 
sequences
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Read-based approaches

Read-based ≃ Reference-based

Align 
short-reads to 
different 
databases 
containing 
reference 
sequences

E.g. ShortBRED, 
ResFinder, DeepARG

Antibiotic resistance genes
Virulence factors

Functional profiling

Taxonomic
profiling



Metagenomics workflow: Assembly-based

DNA extraction Sequencing

Reads

100-150 bp

Assembly-based 

Contigs

1000+ bp

Assembly
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Library of books Shred all books Reconstruct each book

Sequencing Assembly

The Assembly Problem:
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Repetitive content makes the reconstruction more difficult
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Misprints or damaged fragments make reconstruction more difficult
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Rare books are difficult or impossible to reconstruct
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Genome:  reconstruct this

From these
short reads…

Back to DNA sequences…
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Genome:  reconstruct this

From these
short reads…

Problem: We don’t know where the reads came from in respect 
to the genome sequence 
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Genome:  

Reality: Reads are scrambled … 

reconstruct this

From these
short reads…
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??????????????????????????????Genome:  

Reality: Reads are scrambled AND we don’t know the genome 
sequence 

reconstruct this

From these
short reads…
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AAAACTCCATGTG

AAAATCCATATGA

Read A:

Read B:

How do we stitch together reads into contigs?
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AAAACTCCATGTG

AAAATCCATATGA

Read A:

Read B:

How do we stitch together reads into contigs?
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AAAACTCCATGTG

AAAATCCATATGA

Suffix

Prefix

Read A:

Read B:

Suffix - Prefix Overlap 
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First Law of Assembly

If a suffix of read A is similar to a prefix of read 
B… then A and B might overlap in the genome
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Second Law of Assembly

More coverage leads to more and longer 
overlaps
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More coverage leads to more and longer overlaps

Genome:  

More coverage

Less coverage
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More coverage leads to more and longer overlaps

Genome:  

Average coverage: 
207/35 ≈ 6-fold 

Average coverage: 
70/35 = 2-fold 

Coverage=8

Coverage=3 31



Overlap graph

ACGTA

CGTAC

Read A:

Read B:

GTACARead C:

ACGTACAContig:

4

4
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Overlap graph

ACGTA

CGTAC

Read A:

Read B:

GTACARead C:

ACGTACAContig:

4

4

A linear 
unambiguous path

Start

End
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Overlap graph

ACGTACGTAContig:  (With repeats)
34

Read A:

Read B:

Read C:

ACGTA

CGTAC

CGTACA



Overlap graph

The introduced repeat "CGT" appears in multiple reads, causing 
branching paths in the overlap graph 35

ACGTA

CGTAC

Read A:

Read B:

CGTACARead C:



Overlap graph

The introduced repeat "CGT" appears in multiple reads, causing 
branching paths in the overlap graph 36

ACGTA

CGTAC

Read A:

Read B:

CGTACARead C:

4

5

2

4



Overlap graph

ACGTA

CGTAC

Read A:

Read B:

CGTACARead C:

ACGTACA

4

5

Not the original contig

Path along the 
edges with 

highest overlap
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Overlap graph

ACGTA

CGTAC

Read A:

Read B:

CGTACARead C:

ACGTACGTA

42

Original contig

Alternative path
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Overlap graph

ACGTA

CGTAC

Read A:

Read B:

CGTACARead C:

4

ACGTACANot the original contig

Alternative path

39



Third Law of Assembly

Repeats make assembly difficult
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GTACGTACGAT

GTACGT TACGTA ACGTAC CGTACG GTACGA TACGAT

Original contig  

Short reads (6-mers)

Overlap graph
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Overlap graph

● Each read is a node

● Draw an edge between A and B if suffix 
of A overlaps with prefix of B

● Contigs are reconstructed by walking 
along unambiguous paths

● Remove cycles, and at branching paths 
continue on the edge with the highest 
overlap
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GTACGTACGAT
Original contig  
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A Hamiltonian path in a graph is a 
path that visits each node exactly 
once

This path (in this case) is also the 
Shortest Common Superstring 
which represents the most 
compact way to cover all the 
reads, minimizing redundancy

48



Overlap graphs & SCS are not feasible on short-reads

● Quadratic Complexity in Pairwise 
Comparisons: given N reads, this results 
in N * (N - 1) comparisons, which scales 
quadratically with the number of reads

● Finding the Hamiltonian path that 
gives the exact SCS is NP-hard

● Sequencing repeats and errors create 
ambiguous overlaps
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Sequencing repeat 

Repeats introduce ambiguities 

Original contig 
cannot not be 
resolved  
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Modern short-read assemblers use the de Bruijn graph

Scales linearly instead of quadratically 
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Modern short-read assemblers use the de Bruijn graph

Eulerian path: Each edge is visited exactly once
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Overlap-Layout-Consensus
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Assessing assemblies

● Number of contigs

● Average/median contig length

● Min/Max contig length

● N50: The length of the contigs which covers 50% of genome

● Read recruitment: Percentage of all reads mapped back to the assembly

● Evenness in depth along contig

55
https://merenlab.org



Metagenomics workflow: Coverage

DNA extraction Sequencin
g

Reads

100-150 bp

Contigs

1000+ bp

Assembly

*Scaffold

DNA fragments

Forward reads Reverse reads

Contigs

56
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Metagenomics workflow: Coverage

DNA extraction Sequencin
g

Reads

100-150 
bp

Scaffolds

1000+ bp

Assembly

Function

Mapping

Taxonomy 

Genome
57

e.g. 
Bowtie2
BWA
SAMtools
…



Coverage

D
ep

th
Breath

Breath of coverage (covered length)
• Percentage of bases of a targeted genome that are covered with a certain depth

• Metagenomic assembly quality – percentage of data included in the assembly
• Identify chimeric regions 

Depth of coverage (mapping depth)
• Average number of times each nucleotide is covered in the assembly

• Estimate to the abundance of a sequence in the sample
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Metagenomics workflow: Taxonomy

DNA extraction Sequencing

Reads

100-150 bp

Scaffolds

1000+ bp

Assembly

Genome

Mapping

Function

Taxonomy 
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Stay tuned: Tuesday October 15th



A new tool, RAT, expanding taxonomy 
assignment on all three levels

Taxonomic annotation of 
reads with DIAMOND

Taxonomic annotation 
of MAGs with BAT

Taxonomic annotation 
of contigs with CAT RAT

Integrated 
taxonomic 
profiling

Reliability of taxonomic annotation

Fraction of data represented

20 metagenomic classifiers compared: 
Simon et.al, 2019 
(https://doi.org/10.1016/j.cell.2019.07.010)

+ Function
60

https://www.sciencedirect.com/science/article/pii/S0092867419307755?via%3Dihub


A new tool, RAT, expanding taxonomy 
assignment on all three levels
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Metagenomics workflow: Function

DNA extraction Sequencing

Reads

100-150 bp

Scaffolds

1000+ bp

Assembly

Genome

Mapping

Function

Taxonom
y 
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Stay tuned: Tuesday October 15th



Metagenomics workflow: Assembled-based analysis

DNA extraction Sequencing

Reads

100-150 bp

Scaffolds

1000+ bp

Assembly

Genome

Mapping

Function

Taxonom
y 
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Assembled-based 



Metagenomics workflow: Binning

DNA extraction Sequencing

Reads

100-150 bp

Scaffolds

1000+ bp

Assembly

Genome

Mapping

Function

Taxonom
y 
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Binning = Separation of genomes from 
metagenomes
• Who is there and what can every individual do?

PI: How difficult would it be? 

PostDoc: It's challenging yet 

fun, and there are plenty of 
standardized methods available to 
help!

PhD candidates & 
MSc interns

Complex sample

Binning 
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(Contigs)
(MAGs)



Contigs/Scaffolds

Sequence 
composition

Oligonucleotide 
frequencies 

%GC

Length

Abundance 
(different 
samples)

Time/space

Enrichments

DNA extractions

Presence of key 
genes or 
pathways

Taxonomic 
classification
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Contigs/Scaffolds

Sequence 
composition

Oligonucleotide 
frequencies 

%GC

Length

Abundance 
(different 
samples)

Time/space

Enrichments

DNA extractions

Presence of key 
genes or 
pathways

Taxonomic 
classification

Tyson et al. 2004
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Contigs/Scaffolds

Sequence 
composition

Oligonucleotide 
frequencies 

%GC

Length

Abundance 
(different 
samples)

Time/space

Enrichments

DNA extractions

Presence of key 
genes or 
pathways

Taxonomic 
classification

Weber et al. 2011 68



Contigs/Scaffolds

Sequence 
composition

Oligonucleotide 
frequencies 

%GC

Length

Abundance 
(different 
samples)

Time/space

Enrichments

DNA extractions

Presence of key 
genes or 
pathways

Taxonomic 
classification

Albertsen et.al, 2013
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Contigs/Scaffolds

Sequence 
composition

Oligonucleotide 
frequencies 

%GC

Length

Abundance 
(different 
samples)

Time/space

Enrichments

DNA extractions

Presence of key 
genes or 
pathways

Taxonomic 
classification

Eren et.al, 2015
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Automatic tools for binning 

Tools:
MetaBAT2
Maxbin2
CONCOCT

Aggregate multiple binning results:
e.i. DASTool

New kids in the playground:
Vamb
SemiBin
MetaDecoder

Overview of the MetaBAT pipeline.
71



(Semi)Automatic pipelines

MetaErg

MetaWRAP

metaGEM
Atlas

>Standardization of metagenomics is (not) required!
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Manually 

In practice

Automated

Aggregation:
DAS Tools

MetaWRAP

Mixed

Refinement:
Anvi'o

ProDeGe

High sensitivity
High specialization
High time consumption

Good sensitivity
Medium specialization

Medium time consumption

Bad sensitivity
Easy to use
Fast results
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Binners:
MetaBAT2
CONCOCT
MaxBin2

…



MAG quality assessment

• Single-copy marker genes

1. Completeness/completion 
Marker genes are expected to be present 
in all bacteria

2. Contamination/redundancy
Single-copy genes are expected to be only once

74

Golden standard: CheckM 

https://merenlab.org

4,022 closed genomes from NCBI



Metagenomics workflow: MAG-based analysis

DNA extraction Sequencin
g

Reads

100-150 
bp

Scaffolds

Assembly

1000+ bp
Genome

Mapping

Function

Taxonom
y 
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MAG-based 



Criteria: MAG/Assembly-based 
analysis 

Read-based 
analysis ('mapping') 

Comprehensiveness Low/Medium Low/Medium/High

Community complexity Low/Medium High 

Novelty High None

Computational burden High Low

Genome-resolved metabolism High Low

Expert manual supervision High Low/Medium

Integration with microbial genomics High None

Quince et.al., 2017

MAG/assembly-based vs. read-based v2
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Criteria: MAG/Assembly-based 
analysis 

Read-based 
analysis ('mapping') 

Comprehensiveness Low/Medium Low/Medium/High

Community complexity Low/Medium High 

Novelty High None

Computational burden High Low

Genome-resolved metabolism High Low

Expert manual supervision High Low/Medium

Integration with microbial genomics High None

Quince et.al., 2017

MAG/assembly-based vs. read-based v2
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Choose according to
 your q

uestio
n! 



Which tools to pick?

https://www.nature.com/arti
cles/s41592-022-01431-4
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https://www.nature.com/articles/s41592-022-01431-4
https://www.nature.com/articles/s41592-022-01431-4


Metagenomics is a great tool but...

• Abundance is qualitative
• Not easy to be quantitative with microbial communities

• ?Integrate metagenomics/barcoding with qPCR, DNA spiking, flow-cytometry and 
microscopy?

• We are measuring the DNA content, therefore viable & non viable cells
•  RNA, CFUs (if culturable)

• We investigate potential functionality, not activity
• Multi-omics: Adding layers of information (RNA, protein, metabolites)

• No clue on spatial organization
• Microscopy

79



Metagenomics is a great tool but...

• Abundance is qualitative
• Not easy to be quantitative with microbial communities

• ?Integrate metagenomics/barcoding with qPCR, DNA spiking, flow-cytometry and 
microscopy?

• We are measuring the DNA content, therefore viable & non viable cells
•  RNA, CFUs (if culturable)

• We investigate potential functionality, not activity
• Multi-omics: Adding layers of information (RNA, protein, metabolites)

• No clue on spatial organization
• Microscopy
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• Tooooooooooooo much data....
• That’s why you are here! 



Challenges of getting genomes from metagenomes across environments
1) Which of those environments have the highest diversity?
2) From which we can get most MAGs?

81

*High quality: 
> 90% completeness & 
< 10% contamination

MAG: 
metagenome-assembled 
genome

1

2

3

4

4

5



Challenges of getting genomes from metagenomes across environments:
The more data, the better?

82Julien Tremblay, Lars Schreiber, Charles W Greer, High-resolution shotgun metagenomics: the more data, the better?, 
Briefings in Bioinformatics, Volume 23, Issue 6, November 2022, bbac443, https://doi.org/10.1093/bib/bbac443

https://doi.org/10.1093/bib/bbac443


Challenges of getting genomes from metagenomes across environments

# 
hi

gh
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A
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s

Avg sample read depth

83



Challenges of getting genomes from metagenomes across environments
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Total sequence depth

???
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Challenges of getting genomes from metagenomes across environments
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Avg shannon index
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Challenges of getting genomes from metagenomes across environments

# 
hi

gh
 q

ua
lit

y 
M

A
G

s

Avg shannon index

87



Challenges of getting genomes from metagenomes across environments

# 
hi

gh
 q

ua
lit

y 
M

A
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s

Avg shannon index
Hauptfeld, E., et. al. (2022). A metagenomic portrait of the microbial 
community responsible for two decades of bioremediation of 
poly-contaminated groundwater. In Water Research (Vol. 221, p. 118767). 
Elsevier BV. https://doi.org/10.1016/j.watres.2022.118767
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Challenges of getting genomes from metagenomes across environments
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Hauptfeld, E., et. al. (2022). A metagenomic portrait of the microbial 
community responsible for two decades of bioremediation of 
poly-contaminated groundwater. In Water Research (Vol. 221, p. 118767). 
Elsevier BV. https://doi.org/10.1016/j.watres.2022.118767



Practicals

Connect to JupyterHub: 
https://bioinformatics.nl/biosb_metagenomics

>https://mdehollander.github.io/biosb-metagenomics/
By Mattias de Hollander
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https://bioinformatics.nl/biosb_metagenomics
https://mdehollander.github.io/biosb-metagenomics/


Practicals

Connect to JupyterHub: 
https://bioinformatics.nl/biosb_metagenomics

>https://mdehollander.github.io/biosb-metagenomics/

Feeling adventurous? 
Explore the microbiome of a deadly toxic cave 
 -> Cave expedition tab

By Mattias de Hollander
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https://bioinformatics.nl/biosb_metagenomics
https://mdehollander.github.io/biosb-metagenomics/

