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Metagenomics: Overview (today’s focus)
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Metagenomics workflow
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Data preprocessing - Adapters

Adapters are nucleotide sequences placed at
either one or both ends of the DNA fragments that
are being sequenced

They are composed of 3 sections:

= Sequencer binding site (illumina)

= Multiplexing index (P5-P7)

= Sequencing primer binding site (illumina)

They are necessary for sequencing but should be
removed early on in data pre-processing steps

. Single

mm |ndex sample A
mm |ndex sample B
m=  DNA sequence
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Data preprocessing - Demultiplexing

Demultiplexing tools: Sabre, iDemux etc..

Generally performed by sequencing companies before sending
the data. Good to know what it is to be able to spot it in QC.

mm |ndex sample A
mm |ndex sample B
m=  DNA sequence
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Data preprocessing - Adapter trimming
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From QC data you may notice
that adapters are still present in
your sequence. You should
remove them either by providing
the adapter sequence or using a
de-novo search.

Recommended tools:
Trimmomatic, Cutadapt, bbduk, fastp

After adapter removal, rerun QC
on the fastq files

Keep an eye out for polyA and
polyG sequences



Data preprocessing - Quality filter

Phred quality score — Logarithmic score representing the quality of a nucleotide

4 FastQC ol a =

File Help

bad_sequence.txt | good_sequence_short. txt|

@ Basic Statistics

@ Per base sequence quality

32
@ Per sequence quality scores

Per base sequence content

I Phred Quality Probability of Base call
Score incorrect base call accuracy

10 1in 10 90%

S:quence Length Distribution| ii | | 2 O 1 i n 1 O O 9 9 %

Qoo P l 30 1in 1000 99.9%

1 3 5§ 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Position in read (bp)




Data preprocessing - Host (& other) removal
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Metagenomics: Read-based
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Read-based approaches
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Read-based = Reference-based

Align
short-reads to
different
databases
containing
reference
sequences
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Read-based approaches
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Read-based approaches
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Read-based approaches

o l Align
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Read-based = Reference-based
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Metagenomics workflow: Assembly-based
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The Assembly Problem:

Library of books Shred all books Reconstruct each book
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Misprints or damaged fragments make reconstruction more difficult
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Back to DNA sequences...

GAAGTAGAATCTTG
GGAAGTAGAATCT
CGGAAGTAGAATCT
TCCGCAAGTAGAATCTC
TCCGGAAGTAGAATCT
ATGTAACACCGGAAGTA
CATGTGTAACTCCGG
TCCATGTGTAACT
CTACCTGTGTAACTC
ACTCCATGTGTAACTCC
AACTCCATGTGT
AAAATCCATATGA
AAAACTCCATGTG

Genome : AAAACTCCATGTGTAACTCCGGAAGTAGAATCTTG =

From these
short reads...

reconstruct this
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GAAGTAGAATCTTG
GGAAGTAGAATCT
CGGAAGTAGAATCT
TCCGCAAGTAGAATCTC
TCCGGAAGTAGAATCT
ATGTAACACCGGAAGTA From these

short reads...

CATGTGTAACTCCGG
TCCATGTGTAACT
CTACCTGTGTAACTC
ACTCCATGTGTAACTCC
AACTCCATGTGT
AAAATCCATATGA ;
AAAACTCCATGTG §

Genome © AAACTCCATGTGTAACTCCGGAAGTAGAATCTTG - reconstruct this

Problem: We don’t know where the reads came from in respect

to the genome sequence
21



AAAACTCCATGTG
ATGTAACACCGGAAGTA
CATGTGTAACTCCGG
ACTCCATGTGTAACTCC
TCCGGAAGTAGAATCT
CTACCTGTGTAACTC
AAAATCCATATGA
AACTCCATGTGT
GGAAGTAGAATCT
TCCGCAAGTAGAATCTC
TCCATGTGTAACT
CGGAAGTAGAATCT
GAAGTAGAATCTTG
Genome : AAAACTCCATGTGTAACTCCGGAAGTAGAATCTTG =

Reality: Reads are scrambled ...

From these

short reads...

reconstruct this
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AAAACTCCATGTG
ATGTAACACCGGAAGTA
CATGTGTAACTCCGG
ACTCCATGTGTAACTCC
TCCGGAAGTAGAATCT
CTACCTGTGTAACTC From these

AAAATCCATATGA - short reads...

AACTCCATGTGT
GGAAGTAGAATCT
TCCGCAAGTAGAATCTC
TCCATGTGTAACT
CGGAAGTAGAATCT
GAAGTAGAATCTTG

reconstruct this

Reality: Reads are scrambled AND we don’t know the genome
sequence
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How do we stitch together reads into contigs?

Read A: AAAACTCCATGTG

Read B: AAAATCCATATGA
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How do we stitch together reads into contigs?

Read A: AAAACTCCATGTG

Read B: AAAATCCATATGA



Suffix - Prefix Overlap

Suffix

N
4 N

Read A: AAAACTCCATGTG

Read B: AAAATCCATATGA

N /
Y

Prefix




First Law of Assembly

If a suffix of read A is similar to a prefix of read

B... then A and B might overlap in the genome

28



Second Law of Assembly

More coverage leads to more and longer

overlaps
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More coverage leads to more and longer overlaps

AAGTAGAATCTTG

GGAAGTAGAATCTTG

GGAAGTATAATCTTG

CGGAAGTAGAAT
CGGAAGTAGAATC
TAACTACGGCAGTAGAG
TGTAACTCCGGAAGTAG
TGTGTATCTCCC More coverage
TGTGTAACTCCG
CATGTGTAACTCCGG
CTCCATGTGTAAC
ACTCCATGTGTAAC
AACTCCATGTGTA
AAAACACCATCTGA
AAAACTCCATGT
Genome :  AAAACTCCATGTGTAACTCCGGAAGTAGAATCTTG
GGAAGTAGAATCTTG
TAACTCAGGAAGTAG
GTGTAACTCCGGA
TCCATCTGTAACTCC

AAAACTCCATGTGT

Less coverage



More coverage leads to more and longer overlaps

AAGTAGAATCTTG
GGAAGTAGAATCTTG
GGAAGTATAATCTTG

CGGAAGTAGAAT
CGGAAGTAGAATC
TAACTACGGCAGTAGAG

TGTAACTCCGGAAGTAG
TGTGTATCTCCC Average coverage.
TGTGTAACTCCG 207/35 = 6-fold

CATGTGTAACTCCGG
CTCCATGTGTAAC
ACTCCATGTGTAAC
AACTCCATGTGTA
AAAACACCATCTGA
AAAACTCCATGT
Genome :  AAAACTCCATGTGTAACTCCGGAAGTAGAATCTTG
GGAAGTAGAATCTTG
TAACTCAGGAAGTAG _
el Y Average coverage:
TCCATCTGTAACTCC 70/35 = 2-fold

AAAACTCCATGTGT




Overlap graph

Read A: ACGTA '

NI

Read B: CGTAC ‘

NI

Contig: ACGTACA



Overlap graph

Read A: ACGTA ' Start
|
Read B: CGTAC 4‘ '''''
4
|

End

Contig: ACGTACA



Overlap graph

Read A: ACGTA '

Read B: CGTAC ‘

CGT
Contig: ACGTACGTA (With repeats)




Overlap graph

Read A: ACGTA '

| |

Read B: CGTAC ‘

Iy

CGT

The introduced repeat "CGT" appears in multiple reads, causing
branching paths in the overlap graph %



Overlap graph

Read A: ACGTA
nE
Read B: CGTAC

CGT

The introduced repeat "CGT" appears in multiple reads, causing
branching paths in the overlap graph %



Overlap graph

Read A: ACGTA '
‘ ‘ ‘ <4 * Path along the
ReadB: CGTAC (@ | highest overiap
ey
CGT
Not the original contig ACGTACA




Overlap graph

Read A: ACGTA
(N
ReadB: CGTAC ? ernative path

CGT
Original contig ACGTACGTA




Overlap graph

Read A: ACGTA '
Read B: CGTAC < ‘) Alternative path
l

CGT
Not the original contig ACGTACA




Third Law of Assembly

Repeats make assembly difficult

40



Overlap graph

GTACGTACGAT
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Overlap graph

TAC’GAT

e Eachreadis a node GTACGA.
e Draw an edge between A and B if suffix

of A overlaps with prefix of B
e Contigs are reconstructed by walking @®CGTACG

along unambiguous paths ACGTAC®
e Remove cycles, and at branching paths

continue on the edge with the highest

overlap ® @TACGTA

GTACGT
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GTACGA

ACGTAC@®

@
GTACGT

@ CGTACG

TACGAT
@

GTACGTACGAT

@TACGTA
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GTACGA

CGTACG
ACGTAC

4 4
4 4 5

.AQ TACGTA

GTACGT

TACGAT
~0

A Hamiltonian path in a graph is a
path that visits each node exactly
once

This path (in this case) is also the
Shortest Common Superstring
which represents the most
compact way to cover all the
reads, minimizing redundancy
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Overlap graphs & SCS are not feasible on short-reads

TACGAT

e Quadratic Complexity in Pairwise
Comparisons: given N reads, this results
in N * (N - 1) comparisons, which scales
quadratically with the number of reads

GTACGA

e Finding the Hamiltonian path that

gives the exact SCS is NP-hard
ACGTAC

e Sequencing repeats and errors create
ambiguous overlaps 4

’A‘ TACGTA

GTACGT
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Repeats introduce ambiguities

ACGTACE@ ., * - @GTACGT

3

5

Sequencing repeat

CGTACG@
5 4 /

3 @ 1AcGTAC
TACGTA [Original]

TACGAT@ 3

@ GTACGA
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Modern short-read assemblers use the de Bruijn graph

Reference ACTGAGTACCATGGAC

genome GGAC ACTG -
o 1 CTGA

TGGA N

Sequenced ACTGAGTAC /‘ TGAG
reads CTGAGTACCAT ATGG

GAGTACCATGGAC | de Bruijn ’

GAG
Lo graph

k-mers ACTG TACC GGAC \
CTG:AL /\\CC/\ - AGIA

TGAG CCAT g N il

GAGT CATG ACCA_ o £ 5TAC

AGTA ATGG
GTAC TGGA

Scales linearly instead of quadratically
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Modern short-read assemblers use the de Bruijn graph

Reference ACTGAGTACCATGGAC

genome GGAC /'\C|G\
7 CTGA
TGGA N
Sequenced ACTGAGTAC /‘ TGAG
reads CTGAGTACCAT ATéG
GAGTACCATGGAC ' de Bruijn ,
GAG
graph
k-mers  ACTG TACC GGAC \
CTGA ACCA L AGT/
TGAG  CCAT | 4 uf/
GAGT CATG RCCA._ rasat e

AGTA ATGG
GTAC TGGA

Eulerian path: Each edge is visited exactly once
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Short Read Assembly

(read length < repeat length)

B : ENch.
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Long Read Assembly

(read length > repeat length)
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Short Read Assembly

(read length < repeat length)

GGAC ACIG\

" CTGA
TGGA \\
// TGAG
ATGG -
de Bruijn \
h GAGT
ra
CATG grap /
\ ’/\/GT/\
CCAT
o GTAC
ACCA% TACC

Long Read Assembly

(read length > repeat length)

TACGAT

ACGTAC

5 TACGTA

GTACGT

Overlap-Layout-Consensus
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Assessing assemblies

e Number of contigs QUaSt

e Average/median contig length

e Min/Max contig length

e Nb50: The length of the contigs which covers 50% of genome

e Read recruitment: Percentage of all reads mapped back to the assembly

e Evenness in depth along contig

DU ST,

- - 55
https://merenlab.org
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Metagenomics workflow: Coverage
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Metagenomics workflow: Coverage

O Reads
DNA extraction Sequencin — ——
O m—) =
— B
o —
O IS e
|
100-150
bp
i -g. _ Mapping
N Bowtie2 Scaffolds
T\ Bur BWA Taxonomy I
e 4mm—— I—
—
m‘; tég SAMtools Function  m————
“““““““““““ — 1000+ bp

Genome
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Depth of coverage (mapping depth)

* Average number of times each nucleotide is covered in the assembly
* Estimate to the abundance of a sequence in the sample

Breath of coverage (covered length)

* Percentage of bases of a targeted genome that are covered with a certain depth

* Metagenomic assembly quality — percentage of data included in the assembly
* |dentify chimeric regions
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Metagenomics workflow: Taxonomy

O Reads
DNA extraction Sequencing — I
——

Ol  —

——) e
e B =
| —

100-150 bp
b Assembly
i =i Scaffolds
gmsrr Stay tuned: Tuesday October 15th —
| =
m‘; tég Function
uuuuuuuuuuuu 1000+ by

Genome
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A new tool, RAT, expanding taxonomy
assignment on all three levels

Fraction of data represented

(axonomic annotation\ Taxonomic annotation Taxonomic annotation of
of MAGs with BAT of contigs with CAT reads with DIAMOND RAT
Integrated

taxonomic
profiling

\_

Reliability of taxonomic

+ Function 20 metagenomic classifiers compared:

Simon et.al, 2019
(https://doi.org/10.1016/j.cell.2019.07.010)
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https://www.sciencedirect.com/science/article/pii/S0092867419307755?via%3Dihub

L1 Distance

1.5+

1.0=

0.5+

0.0 -

wnjAyd -

A new tool, RAT, expanding taxonomy
assignment on all three levels

ssep =

I
1T s
1
‘l ‘
|
|
|
1 1 1 1
) oy Q %)
a @ ©
=3 3 =5 @
8 2 2 3
< n o
»

Taxonomic Rank

Tool
§ Bracken
Kaiju
Centrifuge
Kraken2

RAT -mcr (CAMI)

RAT -mcr (MetaBAT2)
RAT -cr

RAT -mc

I

Article ‘ Open access ‘ Published: 20 April 2024

Integrating taxonomic signals from MAGs and contigs
improves read annotation and taxonomic profiling of
metagenomes

Ernestina Hauptfeld, Nikolaos Pappas, Sandra van Iwaarden, Basten L. Snoek, Andrea Aldas-Vargas, Bas

E. Dutilh & & F. A. Bastiaan von Meijenfeldt &

Nature Communications 15, Article number: 3373 (2024) | Cite this article
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DNA extraction
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Metagenomics workflow: Function

Sequencing

| e

Mapping

I

Taxonom

|

Function

Genome

100-150 bp

Assembly

Scaffolds
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1000+ bp
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Metagenomics workflow: Assembled-based analysis

O Reads
DNA extraction Sequencing —

—
—
O — ——
— .
O IS e
——
100-150 bp
i r_ Assembly
m Mapping
R C—— Scaffolds
| S \ ; Taxonom _
T N\ Assembled-based _
m‘; tég \ Function

nnnnnnnnnnnn ,, —— 1000+ bp

Genome
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Metagenomics workflow: Binning

A O Reads
b o DNA extraction Sequencing — s—
2 —

O e

| e

100-150 bp
b ‘ Assembly
i Mapping
R C—— Scaffolds
s oo Taxonom 11| D B
RN 4mEm——
|
m‘; tég Function
“““““““““““ o
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Binning = Separation of genomes from
metagenomes

* Who is there and what can every individual do?

Complex sample

(Contigs)

=

Pl: How difficult would it be?

PostDoc: it's challenging yet

fun, and there are plenty of
standardized methods available to PhD candidates &

| .
help! MSc interns
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Contigs/Scaffolds

& ls |

Abundance Presence of key .
Sequence . Taxonomic
.- (different genes or e
composition classification
samples) pathways
| _|Oligonucleotide|| Time/space

frequencies

— %GC

— Enrichments

— Length

—DNA extractions
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I Contigs/Scaffolds
= Al

Abundance Presence of key .
Sequence Taxonomic
.- ditferen genes or e
composition classification
samples) pathways

| |Oligonucleotide

frequencies || | Time/space

0.55

] — Enrichments

0.38

Read average GC content

— Length —DNA extractions

67

Local read depth

Tyson et al. 2004



Contigs/Scaffolds

Abundance Presence of key
(different genes or
samples) pathways

Taxonomic
classification

Sequence
composition

C. acidaminovorans
Tenericutes
Spirochaetes
Planctomycetes

Thermotogae

Dligonucleotide Time/space
frequencies !

—] %GC — Enrichments

Chiorofiexi
Aquificae
Acidobacteria
Chiorobi
Bacteriodetes
Chlamydia
Verrucomicrobia

Nitrospirae
Fusobacteria

Candidate Division TG 1
Deinococcus-Thermus

Firmicutes
Proteobacteria
Cyanobacteria
Nanoarchaeota

— Length —DNA extractions

Korarchaeota
Euryarchaeota

SEEE BN EENEEEENE"EEE EEEN

Crenarchaeota

Weber et al. 2011 68



Contigs/Scaffolds

Abundance Presence of ke .
Sequence (different genes or Taxonomic
composition samples) pathways classification
Length (kbp)  GC (%) Albertsen et.al, 2013
@
Dligonucleotide Time/space ool 10 2 .
frequencies o
100 ©
o~ ® 50 ﬂﬁ o
= °9 _ o
— — Enrichments - S p o f 48
o PD ©
‘_3% 14 (25) ﬂr: @
@ ,

] Length DNA extraction 1

0.01 A

) E @ Proteobacteria

® Bacteroidetes
® Actinobacteria
® T™M7

® Verrucomicrobia

T T 1
10 100 1,000 5,000 69
Scaffold coverage (HP)



Contigs/Scaffolds

Abundance Presence of ke
(different genes or
samples) pathways

Dligonucleotide Time/space
frequencies P

— Jrength

Sequence
composition

Taxonomic
classification

Eren et.al, 2015

Mean coverage view

View layers for samples

Auxiliary layers for contigs

Clustering dendrogram

W E. faecalis (2.87 Mbp) [l S. epidermidis (pan, 2.61 Mbp) P. avidum (2.51 Mbp)
P. rhinitidis (1.80 Mbp) [l S. aureus (2.72 Mbp) [l F. magna (1.02 Mbp) S. pneumoniae (644 kbp) [l P. acnes (291 kbp)
sp. (757 kbp) 8. lugdunensis (2.36 Mbp) L. citreum (1.24 Mbp) [l S. hominis (2.19 Mbp) C. albicans (13.6 Mbp)



Automatic tools for binning

Tools:
MetaBAT2 <§18) @123 @12) %18)

Maxbin2
CONCOCT

Aggregate multiple binning results: S
e.i. DASTool Abundance

—alle, o, el o
abale, Sl el s
e B - T RCRLN N

New kids in the playground:
Vamb
SemiBin 1T~
MetaDecoder L

‘\

Overview of the MetaBAT pipeline.
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(Semi)Automatic pipelines

Quantification

Atlas & ..
T

Binning

: “i = O
: )

Annotation
i — MetaWRAP

>Standardization of metagenomics is (not) required!

metaGEM
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In practice

Manually (% Mixed S Automated
= e~

High sensitivity — Bad sensitivity
High specialization Easy to use
High time consumption Fast results
Aggregation: Binners-:
DAS Tools § l|I| MetaBAT2
MetaWRAP CONCOCT
MaxBin2
Good sensitivity [ Refinement:
Anvi'o
ProDeGe |III
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MAG quality assessment

4,022 closed genomes from NCBI
Completion __ Redundancy

* Single-copy marker genes i (/ }
1. Completeness/completion
Marker genes are expected to be present " »
in all bacteria
2. Contamination/redundancy

Single-copy genes are expected to be only once
https://merenlab.org

Golden standard: CheckM
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Metagenomics workflow: MAG-based analysis

Assembiyosed profing
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DNA extraction

—

MAG-based

Reads
Sequencin ——— —
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100-150
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mm— Assemblxl
Mappin
| pping Scaffolds
Taxonom I___ - B _|
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MAG/assembly-based vs. read-based v2

Criteria: ‘ asec
analysis (‘mapping')

Comprehensiveness Low/ Low/ /High

Community complexity Low/ High

Novelty High None

Computational burden High Low

Genome-resolved metabolism High Low

Expert manual supervision High Low/

Integration with microbial genomics High None

Quince et.al., 2017



MAG/assembly-based vs. read-based v2

Criteria: AG/Assembly-basea V(\\
ana &\O s (‘'mapping')

Comprehensiveness Low/ \)thow/ /
Community complexity Low/ 0( o
O
Novelty \o‘s None
Computational burden ‘og
\
Genome-resolved metabolism 0‘6 Low
G
Expert manual supervisior 00 High /
Integration with mir 00Q¢nomics None

Quince et.al., 2017




Which tools to pick?

Microbiome COSI

CAMI2

CAMI Il Challenge Information

We proudly announce the beginning of the second round of challenges of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI) and
release of the official challenge data sets!

Over the last two years, we received valuable feedback from the community on important challenges in the field and how to design interesting new data sets and
challenges. We incorporated many of your suggestions, thanks again! For you to familiarize with data set types and formats, additional exemplary data sets together
with accompanying standards of truth have already been made available over the last months. Two multisample “toy" data sets representing microbial communities
from different human body sites and from mouse gut are already provided to allow pammpants to prepare for the challenges (https://data.cami-challenge.org/

participate). These practice data sets are gt d from known and theref based methods (e.g., using genome databases for their
analysis) might perform better here than fcr real shotgun metagenomic data, where a substantial portion of microbial community members have not been
sequenced.

The second CAMI challenge datasets will therefore again include new genomes from taxa (at different evolutionary distances) not found in public databases.
Furthermore, a new focus will be on establishing the value of long sequenclng reads for microbiome research, with data sets providing both long- and short-read

data. Lastly, a clinical pathogen discovery challenge will be offered, mimi an gency diagnostic situation in the clinic.

Specifically, the second round of CAMI chall ise a bly, a genome binning, a taxonomic binning and a ta» . H
across several multi-sample data sets from different environments. Thls includes a marine data set (ended), a high-strain diversity data < D S - WWW. n a u re - CO I I l a I
pathogen detection challenge (ended). A new round of challenges on a rhizosphere data set has just started in early 2020!

e —— cles/s41592-022-01431-4

The CAMI Team



https://www.nature.com/articles/s41592-022-01431-4
https://www.nature.com/articles/s41592-022-01431-4

Metagenomics is a great tool but...

* Abundance is qualitative

* Not easy to be quantitative with microbial communities

* ?Integrate metagenomics/barcoding with gPCR, DNA spiking, flow-cytometry and
microscopy?

* \We are measuring the DNA content, therefore viable & non viable cells

* \We investigate potential functionality, not activity
* Multi-omics: Adding layers of information (RNA, protein, metabolites)

* No clue on spatial organization
* Microscopy
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Metagenomics is a great tool but...

* Abundance is qualitative

* Not easy to be quantitative with microbial communities

* ?Integrate metagenomics/barcoding with gPCR, DNA spiking, flow-cytometry and
microscopy?

* \We are measuring the DNA content, therefore viable & non viable cells

* \We investigate potential functionality, not activity
* Multi-omics: Adding layers of information (RNA, protein, metabolites)

* No clue on spatial organization
* Microscopy

* TOO0O0000000000 Much data....

* That's why you are here!
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Challenges of getting genomes from metagenomes across environments %
1)  Which of those environments have the highest diversity?
2) From which we can get most MAGs?

*High quality:
> 90% completeness &
< 10% contamination

MAG:
metagenome-assembled
genome
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Challenges of getting genomes from metagenomes across environments:
The more data, the better?
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Julien Tremblay, Lars Schreiber, Charles W Greer, High-resolution shotgun metagenomics: the more data, the better?, 82
Briefings in Bioinformatics, Volume 23, Issue 6, November 2022, bbac443, https://doi.org/10.1093/bib/bbac443


https://doi.org/10.1093/bib/bbac443

Challenges of getting genomes from metagenomes across environments %

# high quality MAGs

Avg sample read depth
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Challenges of getting genomes from metagenomes across environments %

# high quality MAGs

Total sequence depth
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Challenges of getting genomes from metagenomes across environments %

# high quality MAGs

Total sequence depth
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Challenges of getting genomes from metagenomes across environments %

# high quality MAGs

Avg shannon index
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Concentration =

# high quality MAGs

Avg shannon index

Challenges of getting genomes from metagenomes across environments

Key events in winemaking
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Challenges of getting genomes from metagenomes across environments g
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Hauptfeld, E., et. al. (2022). A metagenomic portrait of the microbial

Avg S h a nn O ] | ] d eX community responsible for two decades of bioremediation of

poly-contaminated groundwater. In Water Research (Vol. 221, p. 118767).
Elsevier BV. https://doi.org/10.1016/j.watres.2022.118767
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Challenges of getting genomes from metagenomes across environments
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Practicals

</>

A}

Connect to JupyterHub:
https://bioinformatics.nl/biosb_metagenomics

>https://mdehollander.qithub.io/biosb-metagenomics/

By Mattias de Hollander
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Practicals

Connect to JupyterHub:
Q https://bioinformatics.nl/biosb_metagenomics

=%’ >htips://mdehollander.github.io/biosb-metagenomics/

By Mattias de Hollander

Q | Feeling adventurous?
Explore the microbiome of a deadly toxic cave
-> Cave expedition tab
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